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Received 8 November 1989 

Abstract. When a gradient is imposed in the control parameter of a directed process in a 
(1 + 1)-dimensional directed process, a front may occur. The position of this front evolves 
in steps of size one in the direction opposite to the gradient, and in steps of size equal to 
or larger than one in the other direction. The larger steps are due to overhangs. There is 
a critical value for the control parameter only if the first moment of the step size distribution 
in the direction of the gradient is not singular-i.e. it takes on a finite value in the 
‘thermodynamic’ limit. If there is a critical point, this step-size distribution is a power law 
at this point, with an exponent larger than two, and which we conjecture to be equal to 
3 - p / v , .  p is the order parameter exponent, and vL is the spatial correlation length 
exponent. In a finite gradient there is a second exponent governing the upper cut-off in 
the step-size distribution. This exponent is equal to vJ( l+  vJ. These two exponents 
govern the convergence of the position of the front towards the critical value of the control 
parameter. We exemplify our discussion with directed site percolation, and with two 
versions of a model originally designed to study catalytic reactions. 

Cellular automata [ 11-or more generally directed processes- possessing a critical 
point for a certain value of some control parameter are abundant. They are appealing 
in that besides being easy to study on a computer, their dynamics may be complicated 
enough to encapsulate all the intricacies of non-equilibrium phase transitions. 
Examples of such models include, apart from directed percolation [2], inhomogeneous 
deterministic cellular automata such as the Kauffman model [3]. In these models the 
critical point separates a chaotic phase sensitive to the initial conditions-known as 
the damage-spreading phase-from a non-chaotic one [ 31. Other examples are models 
constructed to study catalytic chemical reactions [4,5], or fully developed hydro- 
dynamic turbulence [6]. In these models the critical point separates an active-or 
turbulent-phase from a ‘poisoned’-or laminar-phase. 

The gradient method, originally invented by Sapoval et a1 [7], has been used for 
two of the above-mentioned systems besides percolation [8] to determine the critical 
value of the control parameter, namely directed percolation [9] and damage spreading 
[ 101. In this method the control parameter varies linearly in some direction along the 
network of nodes. In (1 + 1) dimensions-i.e. one spatial and one temporal dimension- 
this direction is along the chain of nodes. If there exists a critical point for some value 
of the control parameter, a front will appear separating the two phases somewhere 
along the chain. The mean position of this front defines an effective critical value of 
the control parameter and, in the limit of zero gradient, this effective threshold value 
will converge to the critical value of the control parameter. If pefi  if the effective 
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threshold, and p c  is the critical value of the control parameter p ,  we expect the 
convergence 

peff( g )  = p c  - Bg” + corrections (1) 

when g, the gradient in p ,  becomes small. 
In practice, this means that three parameters have to be determined: p c ,  A and the 

exponent x. Since one has no control over the expected corrections to scaling, some 
of the potential accuracy of the method is lost. The exponent x has been found for 
two-dimensional percolation [l l] .  One aim of this letter is to provide a method to 
identify not only the exponent of the leading correction term, ugx, but also the exponents 
governing the terms of higher order for a general (1 + 1)-dimensional directed process. 
As will be apparent from our numerical results, the second correction to scaling term 
is larger in magnitude than the leading term ag” for the system sizes we work with. 

For concreteness, let us in the following discuss the special case of directed (site) 
percolation [2]. Suppose we have a square lattice placed at 45” compared with its 
lower boundary. The nodes in this lattice are then ‘filled’ with probability p or ‘empty’ 
with probability 1-p. We define an X axis parallel to the lower boundary, and a 
‘time’ axis perpendicular to it. The lattice is in a percolating state at a ‘time’ T if there 
is at least one node connected to the lower boundary through a continuous path only 
touching filled nodes. This particular node is said to be percolating. In the thermo- 
dynamic limit, there is a critical pE such that for p > p c ,  there will always be percolating 
nodes for any T. For p < p c  there will be no percolating nodes in the limit T -+ 00. 

Numerically [ 121, and by series expansion [ 131, the percolation threshold has been 
determined to be pc  = 0.7055 (1). Domany and Kinzel [ 141 recognised that directed 
percolation is equivalent to a cellular automaton of the following type. For each node 
choose a random number between 0 and 1. If this number is less than the parameter 
p ,  and at least one of the neighbours of this node is 1 at the previous time step, set 
this node to 1. Otherwise, set it to 0. This updating is done simultaneously for all the 
nodes in the chain. The initial state of the cellular automaton is chosen to be all nodes 
in state 1. We will discuss directed percolation in this language. 

Suppose now that the chain of nodes has a length L. Furthermore, choose a constant 
gradient g = 1/ L so that p = 0 for the leftmost node, and p = 1 for the rightmost node. 
Thus, at node X ,  p = X / L .  As the directed-percolation cellular automaton is run, a 
front develops if there is a critical p = p c .  The mean position-averaged over time-of 
this front defines an effective threshold p e f f ( g )  -+ p c  as g + 0, as described through (1). 

At a time T the front is situated at node X ,  (measured from the leftmost one). At 
the next time step, T +  1, the front can either move one step to the left with probability 
p = Xf/ L or one step to the right with probability p(1 - p ) .  In addition, the front may 
also make jumps of j steps to the right, where j 3 2. These larger jumps are due to 
the appearance of ‘overhang’, caused by the merging of clusters of non-percolating 
nodes along the front, as shown in figure 1. 

We define N ( j ,  g )  to be the probability of having a jump of size j .  Here j = -1  
denotes a step to the left, j = 1 a step of size one to the right, and j 3 2 a jump to the 
right due to an overhang. 

The mean position of the front, which defines peE(g) ,  is constant if the mean step 
size is zero: 

j N (  j ,  g )  = 0. (2) 
j = - ]  
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X 
Figure 1. The appearance of an overhang leads to a jump in the position of the front from 
one time step to the next one. 

We also have that 

N(-l, g )  = p , f f ( g ) .  (3)  

This is so since the probability of jumping to the left from a position Xf = p L  is p. The 
average probability of jumping to the left must then be equal to (Xf)/L = p e f f .  This 
probability is of course nothing but N(-1, g), and (3) follows. Combining (2) and 
(3) we get 

where ( j ( g ) )  denotes the average step size to the right. 
We are now at the very heart of the analysis we are presenting: Through (4) we 

see that whatever scaling behaviour for small gradients we find for peff, it will be the 
same for the average jump size to the right, ( j ( g ) ) .  Equation (1) was written down 
for directed site percolation, but the arguments leading to (2), are general and valid 
for all directed (1 + 1)-dimensional processes. Equation (3) is, however, not generally 
valid. An example is the Browne-Kleban process [ 5 ]  in the Monte Carlo update 
version, to be discussed below. In this case N(-1, g) is a more complicated function 
of peff than (3). However, if this function is analytic, the conclusions we draw in this 
letter concerning (1) are still valid. 

The model of Browne and Kleban describes a one-component catalytic reaction 
occurring on a surface. The model is updated as follows: each node along the chain 
may be in a state either ‘covered’ (1) or ‘uncovered’ (0). At random we choose a node 
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for updating. If the state is ‘covered’, we do nothing to the node and go on to choose 
another one. If the node is ‘uncovered’, and it has no neighbours that are ‘covered’, 
we set the node to ‘covered’. If one neighbour is ‘covered’ we set the node to ‘covered’ 
with probability p ,  or with probability 1 - p  we leave the node ‘uncovered’ and set the 
neighbouring ‘covered’ node also to ‘uncovered’. If both neighbouring nodes are 
‘covered’, we set the node to ‘covered’ with probability p and with probability 1 - p  
leave the node ‘uncovered’ and set one of the neighbours-which one is chosen at 
random-to ‘uncovered’. There is a critical p c  such that for p > p c ,  all the nodes will 
end up in the state ‘covered’ in a finite time, and for p < p c  there will always be 
‘uncovered’ nodes for an infinite system. p c  has been determined to be 0.2762(5) 
previously [ 5 ,  151. 

In order to be able explicitly to write down a balance equation for this type of 
model, we have devised a simultaneous-update version of the Browne-Kleban model. 
The updating of neighbouring nodes to the one chosen in the Monte Carlo procedure, 
translates in this model to nearest and next-nearest interactions. There is, however, 
no unique way of transcribing the Browne-Kleban model. The problem is that a node 
is simultaneously neighbour to two other nodes, besides having two neighbours. Thus, 
during one update, conflicting values to a given node may be assigned. This problem 
is solved by choosing an ‘order of importance’ to the various possibilities. Our choice 
was to let a site stay ‘covered’ in such a conflict. The resulting behaviour of this cellular 
automaton is rather surprising. It turns out that uncovered nodes always move in pairs. 
The equation corresponding to (4) in this model reads 

1 - P e * ( g ) = ( j ( g ) ) .  (5) 
The asymptotic behaviour of the effective threshold is thus, in light of this discussion, 

closely related to that of the step-size distribution. We make the following scaling 
ansatz for this distribution: 

~ ( j ,  g )  = i - “ f ( j g b )  ( 6 )  
where a and b are two scaling exponents, and the functionf has the limiting behaviours 
f(z) + constant for z + 0 and f(z) + 0 faster than a power law for z + CO. The existence 
of a finite threshold p c  leads to a lower bound on the exponent a 3 2, since the sum 
( j ( g ) )  = Xjal j lV( j ,  g )  must be dominated by the small values of j .  

In order to determine the two exponents a and b in the step-size distribution, we 
calculate two moments, ( j k ( g ) )  = XjSl j k N ( j ,  g ) ,  for large enough k so that the sums 
are dominated by the large j .  These sums may then be approximated by the integrals, 
( j k ( g ) ) = ( 7 j k N ( j ,  g )  dj. These integrals behave as 

(7) ( j k ( g ) >  = A k g b ( ” - k - l )  

where Ak is a constant independent of the gradient g.  In figure 2 we demonstrate the 
scaling of the third, fourth and fifth moments in the case of directed site percolation. 
Table 1 shows deduced exponents a and b for the three models we have studied. This 
table indicates that these three models belong to the same universality class. This 
result is consistent with the findings of Aukrust et a1 for the Monte Carlo update 
version [ 151. 

We now turn to the question of relating the exponents a and b to more familiar 
exponents. The exponent b governing the cut-off length in the jump size distribution 
is the easiest to recognise: it must be the same as the one governing the width of the 
front W ( g )  = ((XI - ( X J > ) ~ > ” ~  - g-’, since there is only one length scale governing the 
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Figure 2. The third, fourth and fifth moments of the jump size distribution for directed 
percolation as a function of the inverse of the gradient g. Also shown are the predicted 
curves from (4). 

Table 1. The exponents a and b goveming the jump size distribution for directed site 
percolation (DP), the Browne-Kleban model with Monte Carlo updating rules ( M B K ) ,  and 
the Browne-Kleban model with simultaneous updating (SBK). These data are based on 
simulating these directed processes on lattices with L varying from 10 to 250, and lo6 time 
steps in the case of the DP and SBK models. For the MBK model 5 x lo5 Monte Carlo 
updates were done. One sample for each model was generated. 

DP MBK SBK 

a 2.75(2) 2.65( 10) 2.80( 10) 
b 0.53(1) 0.51(5) 0.51(5) 

development of the front. The exponent y has been determined by Sapoval et a1 [7] 
to be 

where ul is the spatial correlation length exponent. 
The value of uI is 1.097 2(4) for directed percolation [16], leading to y = 0.523 2 ( 5 ) .  

This value should be compared with those found for b quoted in table 1. 
The exponent a reflects the structure of the clusters of non-percolating or ‘covered’ 

nodes, and we conjecture that it is related to the order parameter exponent p in the 
following way: 

a = 3 - /3/ ul . (9) 
Our argument runs as follows. The size distribution of clusters of non-percolating 
nodes-or  ‘covered’ nodes-along the X axis is given by [6] H ( h )  - h--(2--B’”i). This 
exponent is the fractal dimension of the self-affine set that the percolating nodes form. 
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The next step in this argument is to assume that the jumps sample an undistorted 
cluster size distribution. The jump measures the width of a cluster at the point where 
the barrier of percolating nodes separating it from the front disappears. When con- 
structing the histogram H( h )  the clusters of non-percolating nodes (measured along 
the X axis) is sampled at every time step. However, the sampling of the cluster sizes 
in terms of the jumps are sampled once per merging cluster in the T direction. Thus, in 
order to take this bias into account the histogram H ( h )  must be divided by h to be 
compared with the jump size distribution N ( j ) :  N ( j )  = H ( j ) / j .  This leads to (9). For 
directed percolation [6] p = 0.280(4) leading to a = 2.745(4) by using (9). Again, this 
value should be compared with those listed in table 1. 

We now return to the question of the scaling exponent x appearing in ( 1 ) .  Through 
the balance equation (2), this scaling exponent must also appear in the scaling of the 
first moment of the jump size distribution. If we expand the first moment of the jump 
size distribution in g assuming f(z) is analytic in z as z + 0, we find 

l / g  

( j ( g ) ) =  C j N ( j , g ) = A - B g b ' " - 2 ' + C g b + .  . . . (10 )  
j = l  

The second term in this equation comes from the upper limit of this sum, while the 
third term comes from the lower limit. 

Thus, we recognise A as p c ,  the exponent b(a-2)  as the exponent x, and the 
exponent b as the first correction to scaling exponent. We show a plot of pefl  as a 
function of g, with the predicted behaviour from (10) for directed site percolation 
superposed in figure 3: peff = 0.7055-0.0912g0.390- l . l l g0 .5232 .  It is interesting to note 
that the prefactor of the leading term in this expression is much smaller than the 
correction to scaling term. Thus, without knowing the correction to scaling exponents 
b( a - 2), 6, . . . one would identify x with b. A least squares fit assuming p c  = 0.7055 
gives x = 0.51, which is very close to b = 0.5232 rather than b(a -2)  = 0.390. We also 
note that higher-order corrections to scaling in the effective threshold may also be 

0.70 , 

5 
9 

0.68 

0.67 
0 0. Mu 0.008 0.012 0.016 

Grodient 

Figure 3. The effective threshold pee for directed percolation as a function of g measured 
directly (U) and as predicted from (10) (full curve). 
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calculated from (10). A similar fit for the Browne-Kleban model gives peff= 
0.276 - 0.100g0.390 - 0.792g0.532. 

We have through this method a way to find the exponent p if it is not known 
beforehand, independently of any knowledge of the critical value of the control 
parameter p.  Our present work on these ideas has been restricted to (1 + 1)-dimensional 
directed processes. However, it would be natural to generalise them to other 
dimensions, and to non-directed processes. 

The authors thank S Roux for several valuable discussions. 
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